
A Formal Foundation for Recoverability:
Defining recoverability for arbitrary security properties

Paul Crews1, Christopher Hahn2, Jon McCune1, Caroline Trippel2

ptcrews@google.com
1Google, 2Stanford University
2022-10-28

mailto:ptcrews@google.com


Motivation

Problem: Systems will get compromised

● Software vulnerabilities, logic bugs, side-channels
● Systems that are both security-critical and must be publicly available

Idea: Design systems that can recover from a compromise

● Depends on a semantic notion of security
○ A compromise depends on what guarantees the system designers wanted to provide

● Not all systems or security properties can be (easily) recovered



Overview

Trace properties and hyperproperties can define arbitrary security properties for a 
system.

A compromise is a violation of these properties, modeled as an arbitrary mutation of 
a trace after a point in time:

A property is recoverable if there exists a set of actions such that the property holds 
after a compromise.



Recoverability (Trace Property)

A recoverable (trace) property is a property for which there exists an action such that, 
if this action occurs after a compromise in any trace, the compromised trace is still in 
the property.

Equivalently: A recoverable property is a set of traces closed under a mutation 
(compromise) followed by a recovery action.



Recoverability (Hyperproperty)

A recoverable hyperproperty is a hyperproperty for which there exists an action such 
that, if this action occurs after a compromise in any trace, the compromised trace is 
still in the set of traces.

Equivalently: A recoverable hyperproperty is a hyperproperty where each set of traces 
are closed under a mutation (compromise) followed by a recovery action.



Example: Guaranteed Service

Guaranteed Service: All requests have corresponding responses1.

Recoverable Guaranteed Service: All requests after the recovery actions have 
corresponding responses.

[1]: Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010).



Example: Observational Determinism

Observational Determinism: If any two pairs of traces have low-equivalent starting 
states, then the entire traces are low-equivalent1.

Recoverable Observational Determinism: If any two pairs of traces have 
low-equivalent starting states after the recovery actions, then the remainder of the 
traces are low-equivalent.

[1]: Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010).



Formal Verification: Approach

In Isabelle/HOL:

● Formalize definitions:
○ Define the MUTATE operator
○ Define recoverability, bounded lookback
○ Define Guaranteed Service (GS), Recoverable Guaranteed Service (RGS)
○ Define Observational Determinism (OD), Recoverable Observational Determinism (ROD)

● Prove correctness of definitions:
○ Prove GS, OD aren’t recoverable
○ Prove RGS, ROD are recoverable

● Implement a real-world system
● Prove the system is recoverable

Note: We rely on the Hyperproperties library from Bueno et. al. in this work2.

[2]: Denis Bueno and Michael Clarkson. 2008. Hyperproperties: Verification of Proofs. https://hdl.handle.net/1813/11153

https://hdl.handle.net/1813/11153


Formal Verification: Progress

In Isabelle/HOL:

● Formalize definitions:
○ Define the MUTATE operator
○ Define recoverability, bounded lookback
○ Define Guaranteed Service (GS), Recoverable Guaranteed Service (RGS)
○ Define Observational Determinism (OD), Recoverable Observational Determinism (ROD)

● Prove correctness of definitions:
○ Prove GS, OD aren’t recoverable
○ Prove RGS, ROD are recoverable

● Implement a real-world system
● Prove the system is recoverable

Note: We rely on the Hyperproperties library from Bueno et. al. in this work2.

[2]: Denis Bueno and Michael Clarkson. 2008. Hyperproperties: Verification of Proofs. https://hdl.handle.net/1813/11153

✅

⛔

⛔
⛔

https://hdl.handle.net/1813/11153

