
Designing SGX Applications for Recoverability
ptcrews@cs.stanford.eduPaul Crews

Background and Motivation
Background: Most SGX threat models assume 
that SGX and the enclave application are secure
Problem: SGX vulnerabilities and application 
software bugs make this an unrealistic assumption
Proposal: Define a new threat model that allows 
an attacker to compromise an enclave at time tC
Motivating Questions:
● What security guarantees can we provide?
● What applications are suitable to run in an 

enclave?

Enclave Security 
Property Compromised Examples

Confidentiality
Page Fault Attacks1,2, 

Plundervolt3, 
Foreshadow4, SGAxe5

Integrity Plundervolt3

Attestation Plundervolt3, 
Foreshadow4, SGAxe5

Recoverability, Bounded Lookback
Threat Model: An attacker compromises an 
enclave at time tC

Recoverability: Recovery actions at time tR 
prevent attackers from persisting after tR if tC < tR

Bounded Lookback: Bounding actions at time tB 
prevent attackers from compromising security 
properties before time tB if tB < tC

SGX 
Application

How to Add 
Recoverability

Bounded 
Lookback

EnclaveDB6 Key Rotation Request Validation

SecureKeeper7 Not Possible? Not Possible?

Signal’s PCD8 Supported Supported

Analyzing SGX Applications
Analysis: Examined how to add recoverability, 
bounded lookback to EnclaveDB6, SecureKeeper7, 
and Signal’s Private Contact Discovery8

Implementation: Added recoverability to a mock 
EnclaveDB by implementing key rotations (~1k LoC)
● Measured performance overhead for decryption
Key Takeaways:
● Difficulty is based on the specific security property

○ E.g. Confidentiality + bounded lookback is hard
● Persistent state inhibits recoverability/lookback

Stanford University, Google*

*This work was performed in the context of a course at Stanford University. Current affiliation: Google LLC

Future Work
● Implement a recoverability library for SGX
● Examine how application design influences recoverability, bounded lookback
● Generalize to other trusted hardware (AMD SEV-SNP, Intel TDX, TPMs)

Disclaimer: This work was performed in the personal capacity of the author and does not represent the views of Google or Alphabet.

1. Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. 2016. Preventing page faults from telling your secrets.
2. Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. 2017. Telling your secrets without page faults: Stealthy page table-based attacks 

on enclaved execution.
3. Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against Intel 

SGX.
4. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. 2018. 

Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution.
5. Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020. SGAxe: How SGX fails in practice.

6. Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure Database Using SGX.
7. Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper: 

Confidential ZooKeeper Using Intel SGX.
8. Moxie Marlinspike. 2017. https://signal.org/blog/private-contact-discovery/.

https://signal.org/blog/private-contact-discovery/

