
Vulnerabilities in Trusted Execution Environments (TEEs)
require that TEE applications must be designed to recover from

and limit the damage caused by a compromise.

Recoverability
Recoverability is a property of trace and hyperproperties. A property is
recoverable if there exists a finite sequence of actions r such that if they occur
after the time of compromise, the property still holds for the trace(s).

Example SGX Application: EnclaveDB
EnclaveDB is a DBMS that runs inside an SGX enclave, providing confidentiality
and integrity for stored data7. Since EnclaveDB uses a single global database
key, it is not recoverable and does not provide bounded lookback. We
implemented a small prototype extension to EnclaveDB that implements key
rotation, providing bounded lookback and recoverability. The graph below shows
the decryption latency overhead as a function of time and rotation frequency.

Future Work
● Formally model recoverability and bounded lookback.
● Implement an SGX library that provides recoverability and bounded lookback

for cryptographic primitives.
● Prove that the SGX library is recoverable and has bounded lookback.
● Implement SGX applications that use this library and prove they are

recoverable and have bounded lookback.

A Formal Foundation for Recoverability
Paul Crews

ptcrews@google.com
Google

Introduction
Trusted Execution Environments (TEEs) such as Intel SGX aim to provide
confidentiality and integrity for programs inside the environment. However, in
practice vulnerabilities undermine these guarantees, and thus TEE applications
must be designed to handle a compromise. Using trace properties, this poster
proposes a new threat model and new definitions to formally model how to
design an application that can recover from and mitigate such a compromise.

Threat Model (One-Shot Adversary)
A one-shot adversary can exploit a TEE application precisely once. We model
this by arbitrarily modifying a program trace π after the time of compromise.
The set of all possible compromises for a trace π is defined as MUTATE(π):

For simplicity, we also assume that the attacker does not compromise the
TEE’s ability to recover and perform secure remote attestation. In the case of
SGX, this means the attacker does not compromise the CPU Fuse Keys.

Observational Determinism
Observational Determinism (OD) is a hyperproperty that ensures that for any
two traces with the same low-equivalent starting state, the entire trace is
low-equivalent6.

We modify this hyperproperty to make it provide recoverability and bounded
lookback (RBOD). This guarantees that, for any compromise that occurs
outside the interval [ri:bj], observational determinism still holds in that interval.

Definitions
● 𝚿FIN, 𝚿FIN: The set of all finite and infinite traces, respectively.
● π: A program trace representing a single execution of a program.
● Π: A set of traces representing all possible executions of a program.
● P ∊ Prop: A trace property is defined by a set of traces. A program satisfies P

if Π ⊆ P. Prop is the set of all trace properties.
● P ∊ HP: A hyperproperty is defined by a set of sets of traces, describing

properties between program traces. HP is the set of all hyperproperties.

Background
Most Intel SGX threat models assume that both SGX and the enclave
application are secure. However, recent vulnerabilities in SGX (Table 1) and
the possibility of bugs in the application itself undermine this assumption. As a
result, only applications that can handle such a compromise are suitable for
running in a TEE.

Bounded Lookback
Bounded lookback is a property of trace and hyperproperties. A property has
bounded lookback if there exists a finite sequence of actions b such that if they
occur before the time of compromise, the property still holds for the trace(s).

1. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. 2018.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security 18).

2. Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against Intel SGX. In
2020 IEEE S&P.

3. Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. 2016. Preventing page faults from telling your secrets. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security.

4. Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. 2017. Telling your secrets without page faults: Stealthy page table-based attacks on
enclaved execution. In 26th USENIX Security Symposium (USENIX Security 17).

5. Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020. SGAxe: How SGX fails in practice.

6. Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010).

7. Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB:A Secure Database Using SGX. In 2018 IEEE Symposium on Security and Privacy (SP).

mailto:ptcrews@google.com

