
Vulnerabilities in Trusted Execution Environments (TEEs) 
require that TEE applications must be designed to recover from 

and limit the damage caused by a compromise.

Recoverability
Recoverability is a property of trace and hyperproperties. A property is 
recoverable if there exists a finite sequence of actions r such that if they occur 
after the time of compromise, the property still holds for the trace(s).

Example SGX Application: EnclaveDB
EnclaveDB is a DBMS that runs inside an SGX enclave, providing confidentiality 
and integrity for stored data7. Since EnclaveDB uses a single global database 
key, it is not recoverable and does not provide bounded lookback. We 
implemented a small prototype extension to EnclaveDB that implements key 
rotation, providing bounded lookback and recoverability. The graph below shows 
the decryption latency overhead as a function of time and rotation frequency.

Future Work
● Formally model recoverability and bounded lookback.
● Implement an SGX library that provides recoverability and bounded lookback 

for cryptographic primitives.
● Prove that the SGX library is recoverable and has bounded lookback.
● Implement SGX applications that use this library and prove they are 

recoverable and have bounded lookback.
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Introduction
Trusted Execution Environments (TEEs) such as Intel SGX aim to provide 
confidentiality and integrity for programs inside the environment. However, in 
practice vulnerabilities undermine these guarantees, and thus TEE applications 
must be designed to handle a compromise. Using trace properties, this poster 
proposes a new threat model and new definitions to formally model how to 
design an application that can recover from and mitigate such a compromise.

Threat Model (One-Shot Adversary)
A one-shot adversary can exploit a TEE application precisely once. We model 
this by arbitrarily modifying a program trace π after the time of compromise. 
The set of all possible compromises for a trace π is defined as MUTATE(π):

For simplicity, we also assume that the attacker does not compromise the 
TEE’s ability to recover and perform secure remote attestation. In the case of 
SGX, this means the attacker does not compromise the CPU Fuse Keys.

Observational Determinism
Observational Determinism (OD) is a hyperproperty that ensures that for any 
two traces with the same low-equivalent starting state, the entire trace is 
low-equivalent6.

We modify this hyperproperty to make it provide recoverability and bounded 
lookback (RBOD). This guarantees that, for any compromise that occurs 
outside the interval [ri:bj], observational determinism still holds in that interval.

Definitions
●  𝚿FIN, 𝚿FIN: The set of all finite and infinite traces, respectively.
● π: A program trace representing a single execution of a program.
● Π: A set of traces representing all possible executions of a program.
● P ∊ Prop: A trace property is defined by a set of traces. A program satisfies P 

if Π ⊆ P. Prop is the set of all trace properties.
● P ∊ HP: A hyperproperty is defined by a set of sets of traces, describing 

properties between program traces. HP is the set of all hyperproperties.

Background
Most Intel SGX threat models assume that both SGX and the enclave 
application are secure. However, recent vulnerabilities in SGX (Table 1) and 
the possibility of bugs in the application itself undermine this assumption. As a 
result, only applications that can handle such a compromise are suitable for 
running in a TEE.

Bounded Lookback
Bounded lookback is a property of trace and hyperproperties. A property has 
bounded lookback if there exists a finite sequence of actions b such that if they 
occur before the time of compromise, the property still holds for the trace(s).
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