
Bringing IP Networking to the Internet of Things
Paul Crews, Mateo Garcia, Hubert Teo

Professor Philip Levis, CURIS 2017

Motivation

Related Work
- 6LoWPAN specification (RFC 4944, RFC 6282)
- RTOS and Linux kernel 6LoWPAN implementations
- OpenThread reference implementation
- Zigbee networking protocol

6LoWPAN Overview
The increasing prevalence of internet-connected embedded devices represents a 
significant security challenge. Hardware and resource constraints inhibit 
standard security mechanisms, while internet connectivity further exposes these 
devices. To address these challenges, the Tock operating system is an attempt to 
write a secure embedded OS. 

Our work this summer focused on adding IP networking to Tock. Specifically, we 
implemented the IPv6 LoW power Personal Area Network (6LoWPAN) protocol 
and the IEEE 802.15.4 link/physical layer. The IEEE 802.15.4 protocol is a popular 
link/physical layer used for a number of low-power embedded systems, and 
6LoWPAN is a specification that enables IPv6 packets to be sent over IEEE 
802.15.4 links. Future work will implement the Thread protocol from Nest labs 
on top of 6LoWPAN and IEEE 802.15.4, allowing for full interoperability between 
Tock and other IoT devices.

6LoWPAN is a specification which enables IPv6 packets to be sent over low-power wireless networks. The 
specification defines a compression algorithm and fragmentation process, which allows for large IPv6 packets to be 
sent over links with small MTUs (such as IEEE 802.15.4).

Challenges
Rust and Embedded Resource Constraints: The Rust type system ensures that there is at most a single mutable 
reference or multiple immutable references to any particular object. To allow other layers access to an object, we 
must pass references around. However, this becomes complicated as we consider who “owns” the buffer. Copying 
avoids many issues, but uses unnecessary resources, and with the lack of dynamic memory allocation, any additional 
buffers must be allocated at compile time.
Rust, Compression, and Fragmentation: Since pointer arithmetic and arbitrary type casting are unsafe, performing 
efficient, in-place compression and fragmentation becomes challenging. Initially, we performed operations solely 
on byte arrays, but then developed a more idiomatic encode/decode stream-like utility using macros.
Rust and Variable Sized Headers: For both 6LoWPAN and IEEE 802.15.4, there is substantial variability in overall 
header size set by various options. These interdependencies and lack of dynamic memory or scatter-gather pointers 
means that additional buffers are largely unavoidable. For example, to conditionally prepend or postpend bytes, we 
need to copy the payload from upper layers to different places, and for different sizes. This makes it difficult to 
determine ahead of time where and how large the payload will be.
Rust Lifetimes: Since asynchronous callbacks provide no guarentees about when particular functions will execute or 
complete, it is impossible to reason about certain object lifetimes. To solve this, a large number of objects in Tock 
have the static lifetime, ensuring that they will live for the lifetime of the program.

6LoWPAN Compression
The 6LoWPAN compression scheme can substantially 
reduce the size of IPv6 packet headers and extension 
headers. With IPv6 packets, these headers represent a 
significant portion of the packet size, and often contain 
redundant or compressible information. This increases 
the viability of sending IPv6 packets over low power 
links with small MTUs.

6LoWPAN Fragmentation
Although the 6LoWPAN compression algorithm can 
reduce the size of the IPv6 headers, sometimes 
upper-level protocols need to send IPv6 packets with 
large payloads. In order to send such packets over IEEE 
802.15.4 links, 6LoWPAN defines a link-by-link 
fragmentation and reassembly procedure.

Both 6LoWPAN and IEEE 802.15.4 protocols require significant handling and 
manipulation of untrusted network-provided data. Although there exist several 
other implementations of these protocols, they are written in unsafe languages, 
and are prone to vulnerabilities. By implementing both in Rust, we can enforce 
stronger guarantees about the safety and security of our implementations, while 
remaining efficient and functional on low-power embedded systems.

Our Contribution


