
TiredZebra: Exploring Gossip Protocols in
Sensor Networks

CS 244B Final Project

Paul Crews
Stanford University

ptcrews@stanford.edu

Travis Lanham
Stanford University

tlanham@stanford.edu

ABSTRACT
Wireless sensor networks have extraordinary resource
constraints that demand low power consumption in
order to extend longevity. Designing distributed algo-
rithms to work on low-power, resource-constrained
devices is a challenging problem and requires a differ-
ent approach than a typical distributed environment. In
this paper, we examine one such algorithm, Trickle, in
depth, experimentally measuring its behavior on real-
world hardware and under simulated conditions. We
also extend the algorithm to add an optimization that
allows nodes to turn off their radios for a set period of
time to conserve energy.

KEYWORDS
IoT, Distributed Systems, Sensor Networks, Networking

1 INTRODUCTION
Sensor networks have extreme resource constraints that
require a distinct class of distributed algorithms and
protocols designed for large numbers of lossy nodes
with low-power requirements. The devices that make
up these networks typically consist of small, embed-
ded systems that are placed in remote locations and
cannot connect to a centralized controller. The lack of
a centralized control system necessitates peer-to-peer
gossip protocols to propagate information, including
code updates.
Power consumption is critical for these systems since

their batteries cannot be replaced and thus battery life
determines useful system life. Network radios on these
systems are the largest consumers of energy and there-
fore must be the most optimized to reduce resource
consumption. To compound the issue of propagation,

wireless sensor nodes offer few synchrony guarantees
and nodes constantly fail or experience packet loss.
However, several consensus algorithms have been

designed to function in this restricted context. In this
paper, we examined the Trickle algorithm, which is an
algorithm for eventual consistency over unreliable wire-
less networks [3]. We present our own implementation
of Trickle and measure its performance under differ-
ent network conditions, both on real-world hardware
and in a simulated environment. We also present an ex-
tension to Trickle, which makes different assumptions
about the underlying network topology but enables
some nodes in the network to sleep.
We first describe the background for the Trickle al-

gorithm, including our proposed modification and its
implications. We then discuss the methodology used
to test Trickle in several network configurations and
mediums, and evaluate the validity of claims made sur-
rounding the recommended values for certain Trickle
parameters.We also test our modified version of Trickle,
Sleepy Trickle, under the same network conditions to
see how the modified algorithm changes the overall
power cost. We then present the results of our exper-
iments, analyzing the results based on the expected
behavior of the algorithm. Finally, we present our con-
clusions, and suggest that Sleepy Trickle is a viable
extension to Trickle under certain network conditions.

2 BACKGROUND
2.1 Trickle Algorithm
The Trickle algorithm was initially developed to dis-
tribute code updates throughout a wirelss sensor net-
work using a minimal number of packet transmissions
while evenly distributing the transmit load over each
node and preventing broadcast storms. One of the key

insights during the development of Trickle was that
transmission was much more expensive than radio re-
ception; as a result, it was cheaper to leave radios on
in the listen state if that reduced the overall number of
transmissions. The algorithm was initially developed
for TinyOS and associated projects, but is now incor-
porated in a number of other network standards [4].
The foundation of the algorithm is the proposition

that nodes should remain quiet unless they see an up-
date on the network and then should broadcast it out;
after receiving an update, a node should advertise it
minimally, exponentially backing off while making ad-
ditional transmissions to preserve resources. The moti-
vation behind this foundation is that nodes in range of
each other will quickly propagate an update and then
go into a standby mode with occasional transmissions
until the next update is introduced. Trickle also sends
all messages to a broadcast address which allows all
nodes in range to hear an update without requiring
pairwise connections for propagation.
The Trickle gossip algorithm operates on a series of

time intervals where a random time is chosen from the
current interval to decide whether or not to broadcast
the current version. If the node has heard its current
version broadcast by several other nodes in the current
interval then it will not broadcast to avoid duplicate
effort. If a node hears a version that is behind its current
version, it will reset its interval to the minimum size
then broadcast out the more recent version to bring the
rest of the network up to speed.
The algorithm relies on several configurable variables

to determine these time intervals. The time interval
spans from [0, T] from which it randomly chooses the
time t to broadcast in the current time interval (note
that t is not an absolute time, but rather an offset from
the beginning of the time interval). Each node also has
a counter c for tracking the number of updates it has
heard in the interval; if the node hears k updates before
it’s transmission time t then it will not transmit. k is
typically a small number (1 to 4) because if the update
has already been heard several times then it is likely
that it has spread throughout the network and gained
saturation. For a sparse network, a lower k is desirable
because even if a node hears another has an update,
there might be nodes that were out of range and did
not hear the transmission. After the interval T finishes,
the counter c is reset and a new t transmission time is
selected for the new interval.

However, in practice, the Trickle authorsmodified the

original algorithm to select t from the interval [
T

2
,T] in-

stead of [0,T]. We also adopted this modification which
aimed to address the "short listen" effect described by
the authors where the lack of time synchronization re-
sults in nodes having offset intervals such that they
would ordinarily suppress broadcasts but line up so a
node broadcasts, then it’s interval ends, then another
node’s interval begins and it broadcasts shortly after
the first. This represents an adversarial case that can
significantly increase the number of broadcasts and
needlessly transmit messages. Taking the transmission
time t from only the second half of the interval enforces
a fixed waiting period for all nodes which provides an
upper bound on the broadcast rate.
Another optimization the algorithm introduces is

a dynamic configuration of the window timing inter-
val. A large T interval has a low resource overhead
while a small T propagates information through the
network faster. Trickle responds dynamically by vary-
ingT within an interval [Tl ,Th]. After intervalTn ,Tn+1
is doubled to be Tn+1 = 2Tn . An upper bound is estab-
lished as Th so doubling goes to that limit. If a node
hears an update then it resets T to Tl and begins again.
This is analogous to TCP window size in the exponen-
tial increase stage. Each interval that passes without
an update results in a doubling of the prior interval
length. Thus, as time passes and no new updates are
heard, nodes will wake up less frequently.

2.2 Sleepy Trickle Extension
Our extension to the Trickle algorithmmakes additional
assumptions about the network topology. In particu-
lar, we assume that there is some set of router nodes R
that form a connected graph and some disjoint set of
leaf nodes L. Nodes in R are expected to be high-power,
and nodes in L can be low-power. This network model
is intended to resemble a common network configura-
tion, where low-power weak nodes are connected to
reliable, high-power nodes. Our modification exploits
these properties to allow the lower-power nodes in L
to sleep, while tuning Trickle parameters to increase
the transmit load on the nodes in R.
The first modification we made was to increase the

transmit load on the nodes in R, and we achieved this
by increasing the Trickle k parameter for each node in
R. As described in 2.1, the k parameter determines how

2

many messages are required to suppress a transmission
at a node. By increasing this parameter at some subset of
nodes, we increase the broadcast load at these nodes and
increase the probability that they transmit. Thus, even
in a lossy network, this helps to suppress transmissions
of nodes not in R - that is, the low-power leaf nodes.
In addition to varying thek parameter between nodes

in R and nodes in L, we also allowed nodes in L to enter
a sleep state. Our algorithm for entering sleep state is
as follows; when a node in L has reached the maximum
sized interval Th and has not transmitted during the
prior period, it is allowed to sleep for some interval
Ts . Once waking from sleep, the node resumes normal
operations with interval Th . Note that this sleep state
is equivalent to a node simply disconnecting from the
network for the sleep interval Ts . The node is then
allowed to sleep again after not transmitting for an
interval of length Th as before.
There are several interesting emergent properties of

this modification. First, the normal Trickle algorithm
runs on each of the nodes in R. Since these nodes are
assumed to be normally connected, this ensures that
updates are eventually propagated to every node in
R, assuming disconnected nodes are eventually recon-
nected. A second interesting property of the modified
algorithm is that this algorithm is equivalent to some
subset of nodes in L disconnecting for time Ts in the
standard Trickle implementation. Thus, many of the
properties of standard Trickle is maintained in Sleepy
Trickle, including at the sleepy nodes L. Finally, another
interesting property is the long-term behavior of a dis-
connected set of nodes in L. Consider some subset Ld
of L such that no node has received an update. Thus,
since no external transmissions can be heard, |Ld | − k
nodes must remain awake for the next sleep period,
as k must have transmitted. Note that this property
holds regardless of sleep interval timing; thus, so long
as one node in the |Ld | − k awake nodes is eventually
reconnected, the update will spread to the disconnected
group. Additionally, since the selection of awake nodes
is randomized based on when the t timer fires, there
is a non-zero probability of a particular node remain-
ing awake, indicating that so long as some node in Ld
is eventually updated, the rest of the nodes are also
eventually updated.
Although this modification preserves many of the

guarantees of the original Trickle algorithm, there are

several properties to Sleepy Trickle that reduce its ef-
ficiency. First, the update latency is significantly in-
creased. Not only does it take substantially longer to
update nodes in L, but in complex multi-hop networks,
there can be additional propagation speedup in stan-
dard Trickle by sending updates through nodes in L.
Since these nodes may be asleep, the total number of
hops to update the nodes in R may be larger. In ad-
dition to latency, transmit efficiency is impacted. Al-
though Sleepy Trickle attempts to synchronize sleep pe-
riods for nodes, an intrinsic property of Sleepy Trickle
is that fewer nodes receive the update at around the
same time. Thus, groups of nodes may receive the up-
date in batches, which increases the number of overall
transmissions (as some transmissions would have been
suppressed by other nodes that were simultaneously
updated). Finally, the guarantees of Trickle are more
difficult to ensure in Sleepy Trickle.

3 IMPLEMENTATION
3.1 ZebraSim: Software Simulation
Our first contribution is the development of a software
simulation environment for Trickle that we call Ze-
braSim (in reference to ZebraNet, a deployment of sen-
sors to track zebra herds in Africa and an inspiration
for the Trickle paper). The original Trickle paper dis-
cussed a software simulator used for validating the al-
gorithm and parameter tuning (particularly for sparse
network topologies). However, this simulator was not
made available by the authors and from the description
in their paper appears to be a fairly simple program
that mathematically models the parameters.
ZebraSim introduces a flexible simulator that main-

tains state for each simulated node and provides flexibil-
ity for creating the node topology. Nodes can be placed
randomly or in groups and with specified spacing con-
straints (groups or individuals can be close together to
create a dense network or far apart for a sparse one
that requires multiple hops).
ZebraSim exposes a basic interface for each node,

namely a transmit function and a receive function. The
receive function delivers a broadcast message to the
node and invokes the node processing for it, consisting
of incrementing c , and potentially setting up a message
to be transmitted at the transmit time for the interval.
Each node can be configured with a k , Tl , Th , loca-

tion, optional travel distance, and optional packet loss.
3

Figure 1: Imix boards with raspberry pi con-
troller.

If travel distance is greater than 0 then the node will
move position a random amount up to that distance
in a random direction each interval (to model sensor
networks that are geographically dynamic, for exam-
ple, GPS tags for endangered animals). The packet loss
parameter is a probability that a broadcast packet is not
heard by the node (to introduce loss into the network).
We originally prototyped amulti-node simulatorwhere

nodes would be simulated with docker containers and
networked together, however, this introduced noise into
network measurements due to inter-container network-
ing delay and was less reliable than a formal simulation.

3.2 Hardware Testbed
For our hardware testbed, we implemented Trickle and
Sleepy Trickle on the Imix hardware platform running
the Tock operating system [1]. Tock is a embedded
operating system written in Rust and designed for low-
power embedded devices, and represents a feature-rich
test bed for low-power wireless research [2]. Only one
modification was made to Tock itself, which involved
adding back functionality for the hardware random
number generator required by Trickle. The Imix board
contains 64kB of RAM, a 40MHz Cortex-M processor,
and a 2.4GHz IEEE 802.15.4 radio. This platform is an
accurate representation for what kinds of low-power
hardware Trickle was designed to run on, and captures
the resource-constrained environment that both Trickle
and Sleepy Trickle should run on. We used a total of

13 Imix boards to conduct our measurements, and con-
nected GPIO pins to a Raspberry Pi to get accurate
propagation measurements from a consistent internal
clock as seen in Figure 1.

4 RESULTS
In this paper, we set out to examine two ideas. First,
we were interested in the performance of Trickle under
different network configurations, focusing on the claim
that for dense networks, large values should be selected
for k and Tl . Second, we were interested in the perfor-
mance of Sleepy Trickle and how it compares to Trickle
with regards to update latency and total transmission
counts for low-power nodes. We highlight our results
in the following subsections. First, in 4.1 we examine
the behavior of Trickle with varying k and Tl values in
a dense, single-hop network. In 4.2 we then test how
the optimal k andTl values perform in a multi-hop net-
work environment. Finally, section 4.3 compares the
performance of Sleepy Trickle to Trickle with regards to
increased update latency and total transmission counts.
We consider Sleepy Trickle a viable modification if it
results in a moderate increase in update latency, and
a substantial decrease in total transmission counts for
the low-power leaf nodes. The results of our test con-
firm that Sleepy Trickle appears to meet both of these
criteria.

4.1 Dense Single-Hop Network
Our first claim was that Trickle performs best in dense
networks with a high k value and a high Tl value. In
order to measure for performance, we measured the
total time it took for an update to propagate through a
network of connected nodes and the total transmission
counts for the nodes.
We first tested this hypothesis on the hardware test

bed. Using 13 total nodes, we used the configuration de-
scribed in section 3.2 to measure the propagation delay
and packet counts. For the single-hop network, we mea-
sured the latency for four different k and Tl value pairs
as shown in Figure 2. We can see that the first test, for
k = 1,Tl = 1s , had significant latency. We hypothesize
that this is due to the hidden terminal problem and pos-
sible interference, delaying all nodes from immediately
hearing the update. Once k is increased to 2 however,
the delay dramatically drops; this makes sense, as each
node must hear two transmissions to remain silent.

4

Figure 2: Propagation time for Single-Hop hard-
ware nodes.

Figure 3: Propagation time for multi-hop vs
single-hop.

In general, the tests seem to confirm the pattern that
as k increases, the latency drops, while as Tl increases,
the delay likewise increases. By increasing both values,
this seems to minimize propagation delay while allow-
ing for a quick increase in interval size. One potential
problem in a dense single-hop network with a high k
and a high Tl value is that the k value is approximately
the total number of transmissions in an interval. This
means that increases in k also increases the energy cost
in a network, which can negatively impact the lifetime
of battery powered nodes.
In our software simulation, we found similar patterns,

although with a higher k value and higher Tl we had
faster convergence which we attribute to no loss and a
dense grouping that took only a few dozen intervals to
fully propagate.

4.2 Multi-Hop Network
Although a high k and a high Tl value works well in
dense single-hop networks, we wanted to examine how
it performed in multi-hop networks. Since wireless
network topologies can change dramatically over the
course of a deployment, ensuring that this configura-
tion also works for sparse multi-hop networks is cru-
cial. To this end, we measured the end-to-end update
propagation latency in ZebraSim and on the hardware
testbed.
For the hardware testbed, we implemented the multi-

hop simulation described in section 3.2. We used 13
nodes, each of which could only communicate with
nodes whose MAC addresses differed by +/−1. This en-
sured worst-case performance, as each node could only
receive updates from its immediate neighbor, creating a
13-hop long update chain.We thenmeasured the end-to-
end update time for k = 2,Tl = 1s and k = 4,Tl = 10s
as shown in Figure 3. As the graphs show, there is a
huge latency penalty for a large Tl in the multi-hop
network. As a node must remain silent for the first half
of an interval, when receiving an update with a largeTl
value, the node remains silent for a significant amount
of time. In our configuration, this creates substantial
latency as each hop introduces a multi-second delay.
Although the high k and highTl parameters perform

well in dense single-hop networks, they perform partic-
ularly bad in large, multi-hop networks. However, the
multi-hop network configuration tested here is most
likely not indicative of real-world wireless networks,
but it still demonstrates the behavior of Trickle under
such conditions.

4.3 Sleepy Trickle
The final claim we tested was that our Sleepy Trickle
modification decreases packet transmissions for leaf
nodes while marginally increasing overall update la-
tency. We tested this on the hardware testbed, measur-
ing per-node packet transmissions while in steady state
and while sending an update. We also measured the
total update latency for all nodes, and compare these
results to the standard Trickle algorithm in a dense
single-hop network. We used a total of 13 nodes, 2 of
which were the router nodes (nodes 0 and 1), while the
remainder were sleepy nodes (nodes 2-12). The k-value
for the router nodes (denoted kr) we set to 4, while
for the sleepy nodes we had ks = 1. For the reference

5

Figure 4: Normal Trickle transmission counts for
k = 4,Tl = 1s.

Figure 5: Sleepy Trickle transmission counts for
kr = 4,ks = 1,Tl = 1s.

Trickle version, we set k = 4, and for all nodes we set
Tl = 1s . We first let both Trickle and Sleepy Trickle
stabilize, then measured 30 minutes of stable transmis-
sions before initiating an update and measuring the
total packet counts.
As Figures 4 and 5 show, the transmissions for Sleepy

Trickle are dominated by the router nodes, and the
net transmit count is much lower (59 transmissions)
compared to standard Trickle (108 transmissions). For
latency measurements, Figure 6 shows the difference in
completion time for normal Trickle and Sleepy Trickle,
with parameters k = 2,Tl = 1s and kr = 4,ks =
1,Tl = 1s respectively. Although Sleepy Trickle clearly
increases the propagation time, we note that this is di-
rectly related to the amount of time nodes are asleep
for (in this case, Ts = 64s). With these parameters, the
increase in propagation time and the dramatic decrease

Figure 6: Trickle (k = 2,Tl = 1s) vs Sleepy Trickle
(kr = 4,ks = 1,Tl = 1s) latency.

in transmissions by leaf nodes indicates that this modi-
fication is a viable extension of the Trickle protocol, and
would enable more efficient deployment within specific
network topologies.

5 CONCLUSIONS
With growing interest in internet of things embedded
devices has come a resurgence of interest in low cost dis-
tributed protocols for information propagation. Trickle
achieves the goal of fast code propagation through a
lossy wireless sensor network while conserving power
resources.
We further validate Trickle’s performance, first with

a high fidelity simulator, and second with a port to the
Tock embedded operating system platform. We extend
the original algorithm with Sleepy Trickle which takes
concepts from traditional distributed networks (routing
nodes) and apply them to the sensor network to achieve
substantially lower transmission costs, at the expense
of greater propagation delay.

REFERENCES
[1] github.com/lanhamt/sleepyzebra
[2] www.tockos.org/
[3] Levis, Philip, et al. "Trickle: A self-regulating algorithm for

code propagation and maintenance in wireless sensor net-
works." Proc. of the 1st USENIX/ACM Symp. on Networked
Systems Design and Implementation. 2004.

[4] Hui, Jonathan W., and David Culler. "The dynamic behavior
of a data dissemination protocol for network programming
at scale." Proceedings of the 2nd international conference on
Embedded networked sensor systems. ACM, 2004.

6

github.com/lanhamt/sleepyzebra
www.tockos.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Trickle Algorithm
	2.2 Sleepy Trickle Extension

	3 Implementation
	3.1 ZebraSim: Software Simulation
	3.2 Hardware Testbed

	4 Results
	4.1 Dense Single-Hop Network
	4.2 Multi-Hop Network
	4.3 Sleepy Trickle

	5 Conclusions
	References

