
TiredZebra
Exploring Gossip Protocols in 
Sensor Networks

Paul Crews
Travis Lanham



Background: Trickle

- Protocol for software updates in wireless networks
- General algorithm for eventual consistency

- Longevity of sensors is paramount, need to be ultra low 
power
- Ex. Tracking sensors for animals (need to last on the order of years)



Background: TockOS

- Research OS at Stanford

- Embedded operating system for IoT devices

- Written in Rust for memory safety

- Good platform for low-power devices



Trickle Algorithm

- “Polite Gossip”: at random time point in interval, 
broadcasts most recent update (unless it has heard update 
broadcast by other nodes recently)

- Tunable parameters
- T: transmission interval, higher T means fewer transmissions and 

longer propagation time, small T means shorter propagation time and 

more energy consumption

- Tl is lower bound, Th is upper bound, when T expires it doubles 

next timeout (up to Th); if new update is heard, resets to Tl

- K: when node is deciding to broadcast, if it has heard fewer than k 

broadcasts for the update then broadcasts it, otherwise remains 

silent 



Trickle Algorithm



ZebraSim

- Software simulation for algorithm
- Original paper had lower fidelity simulator
- Configurable k, Th, Tl, distribution of nodes (and 

movement), simulation duration (number of epochs), loss 
rate



ZebraSim Results



Tock Simulation

￼



Tock Simulation

- Used 13 Imix boards running Tock
- Evaluated three versions of the Trickle algorithm:

- Single-hop, dense network

- Multi-hop network

- Sleepy Trickle

- Measured total propagation time, # packets sent



Single-Hop Network

- Tested four different pairs of k, T_l
- Low k: susceptible to hidden terminal

- High T_l: high(er) latency

- Claim: For dense networks, best option is large K, T_l



Single-Hop Network



Multi-Hop Network

- Simulated a sparse, multi-hop network
- Greatly increased tail latency
- Vulnerable to bad nodes, “hidden” terminal



Multi-Hop Network



Sleepy Trickle

- Problem: Trickle is transmit efficient, still have to 
listen constantly

- Insight: Make more assumptions about network
- There are router nodes and leaf nodes

- Leaf nodes are connected to >= 1 router node

- Idea: Leaf nodes can sleep
- Set k = 1, sleep after not transmitting for a full interval of T_h



Sleepy Trickle

- Setup
- K=1 for leaf nodes, K=4 for router nodes

- 2 router nodes

- T_l = 1s for everyone

- During update
- 8 total messages for normal (~1 message/sec)

- 24 messages for sleepy (~0.4 message/sec)

- Stable state
- ~2 messages per interval for both

- Dominated by router nodes for sleepy



Sleepy Trickle



Demo



Conclusions

- Trickle offers ability to propagate information through 
sensor network at low cost 

- Eventually consistent
- In the normal case converges quickly, sparser networks 

require more resources for fast propagation (clearly 
demonstrates the tradeoff and provides parameters for 
appropriate configuration)

- Our contributions
- Algorithm modifications (sleepy)

- Improved simulator

- Ported to new OS/environment

- Higher fidelity hardware testbed



Questions

https://c1.staticflickr.com/5/4101/4867883284_19bc559d80_b.jpg


Links

- TockOS
- GitHub: https://github.com/helena-project/tock

- Webpage: tockos.org

- Code
- Code: https://github.com/lanhamt/trickle

- Tock branch: https://github.com/ptcrews/tock/tree/cs244b_trickle

https://github.com/helena-project/tock
https://github.com/lanhamt/trickle
https://github.com/ptcrews/tock/tree/cs244b_trickle

