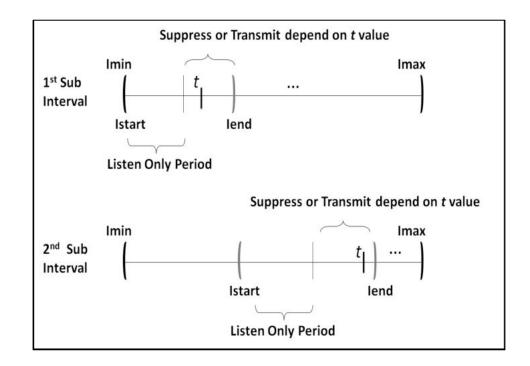
TiredZebra Exploring Gossip Protocols in Sensor Networks

Paul Crews Travis Lanham

Background: Trickle

- Protocol for software updates in wireless networks
 - General algorithm for eventual consistency

- Longevity of sensors is paramount, need to be ultra low power
 - Ex. Tracking sensors for animals (need to last on the order of years)

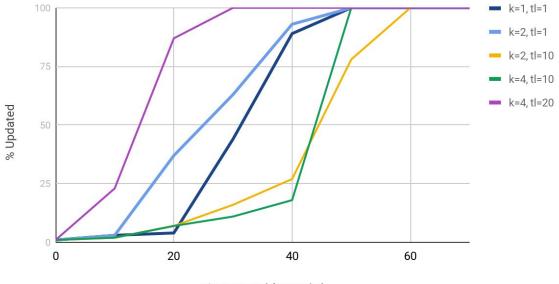

Background: TockOS

- Research OS at Stanford
- Embedded operating system for IoT devices
- Written in Rust for memory safety
- Good platform for low-power devices

Trickle Algorithm

- "Polite Gossip": at random time point in interval, broadcasts most recent update (unless it has heard update broadcast by other nodes recently)
- Tunable parameters
 - T: transmission interval, higher T means fewer transmissions and longer propagation time, small T means shorter propagation time and more energy consumption
 - Tl is lower bound, Th is upper bound, when T expires it doubles next timeout (up to Th); if new update is heard, resets to Tl
 - K: when node is deciding to broadcast, if it has heard fewer than k broadcasts for the update then broadcasts it, otherwise remains silent

Trickle Algorithm



ZebraSim

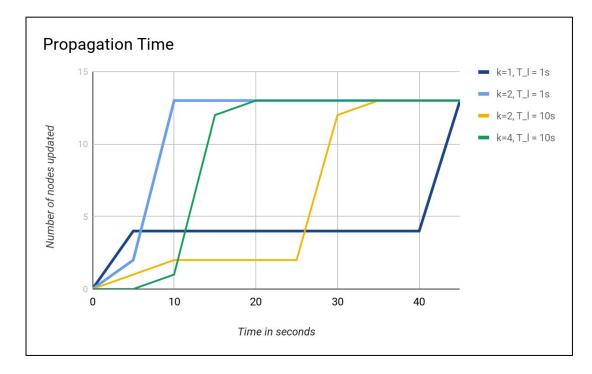
- Software simulation for algorithm
- Original paper had lower fidelity simulator
- Configurable k, Th, Tl, distribution of nodes (and movement), simulation duration (number of epochs), loss rate

ZebraSim Results

Simulation

Time Interval (# epochs)

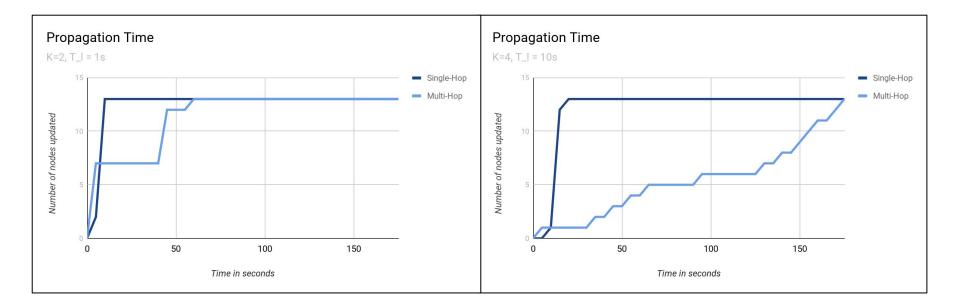
Tock Simulation


Tock Simulation

- Used 13 Imix boards running Tock
- Evaluated three versions of the Trickle algorithm:
 - Single-hop, dense network
 - Multi-hop network
 - Sleepy Trickle
- Measured total propagation time, # packets sent

Single-Hop Network

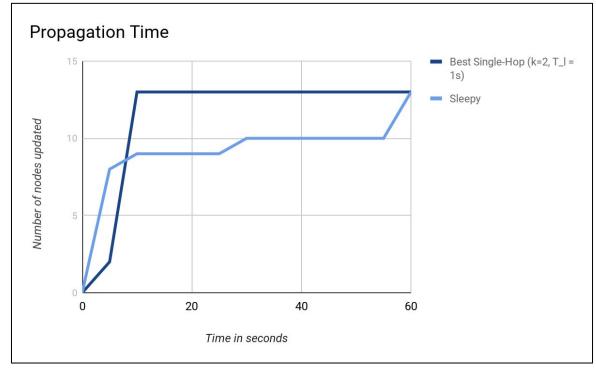
- Tested four different pairs of k, T_l
 - Low k: susceptible to hidden terminal
 - High T_l: high(er) latency
- Claim: For dense networks, best option is large K, T_l


Single-Hop Network

Multi-Hop Network

- Simulated a sparse, multi-hop network
- Greatly increased tail latency
- Vulnerable to bad nodes, "hidden" terminal

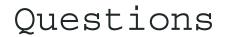
Multi-Hop Network


Sleepy Trickle

- Problem: Trickle is transmit efficient, still have to listen constantly
- Insight: Make more assumptions about network
 - There are router nodes and leaf nodes
 - Leaf nodes are connected to >= 1 router node
- Idea: Leaf nodes can sleep
 - Set k = 1, sleep after not transmitting for a full interval of T_h

Sleepy Trickle

- Setup
 - K=1 for leaf nodes, K=4 for router nodes
 - 2 router nodes
 - T_l = 1s for everyone
- During update
 - 8 total messages for normal (~1 message/sec)
 - 24 messages for sleepy (~0.4 message/sec)
- Stable state
 - ~2 messages per interval for both
 - Dominated by router nodes for sleepy


Sleepy Trickle

Demo

Conclusions

- Trickle offers ability to propagate information through sensor network at low cost
- Eventually consistent
- In the normal case converges quickly, sparser networks require more resources for fast propagation (clearly demonstrates the tradeoff and provides parameters for appropriate configuration)
- Our contributions
 - Algorithm modifications (sleepy)
 - Improved simulator
 - Ported to new OS/environment
 - Higher fidelity hardware testbed

Links

- TockOS
 - GitHub: https://github.com/helena-project/tock
 - Webpage: tockos.org
- Code
 - Code: <u>https://github.com/lanhamt/trickle</u>
 - Tock branch: <u>https://github.com/ptcrews/tock/tree/cs244b_trickle</u>